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Abstract--In this paper, the non-Fourier effect in a slab subjected to a periodic thermal disturbance is 
investigated by deriving the analytical solution of the hyperbolic heat conduction equation. The temperature 
profiles at the front and rear surfaces of the slab are calculated for various relaxation time. By comparing 
the results with those obtained from the Fourier parabolic heat conduction equation, a transition condition 
between the 'parabolic' and 'hyperbolic' behavior at both surfaces is obtained. The phase and amplitude 
difference between the front and the rear surface is calculated numerically as a function of the relaxation 

Fourier number and the results are shown graphically. 

INTRODUCTION 

The non-Fourier  effect becomes more and more 
attractive in practical engineering problems because 
the use of heat sources such as laser and microwave 
with extremely short durat ion or very high frequency 
has found numerous applications for purposes such 
as surface melting of metal [1] and sintering of cer- 
amics [2]. In such situations, the classical Fourier 's 
heat diffusion theory will become inaccurate. 

Theoretically, the Fourier's heat-conduction equa- 
tion leads to the sobations exhibiting infinite propa- 
gation speed of thermal signals. In order to eliminate 
this paradox, Cattaneo [3] and Vernotte [4] inde- 
pendently postulated a time-dependent relaxation 
model for the heat flux in solids: 

q = - 2 V T - z 0  ~ q  (1) 

where q is the heat-flux, T is the temperature, 2 is the 
thermal conductivity and z0 is the relaxation time. 
Equation (1) and the conservation equation of energy 
lead to a description of an unsteady temperature pro- 
file in the form of the hyperbolic equation 

c~T 02T 
aV 2 T = &- + %  - -  (2) 

at 2 

where a is the thermal diffusivity, x/(a/%) is the propa- 
gation speed of temperature wave. 

Various solutions of the hyperbolic heat conduction 
equation for finite medium under different initial and 
boundary  conditions can be found in literature, which 
are listed as following: (1) in 1972, Taitel gave an 
analytical solution for a thin layer subjected to a step 
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change of temperature on its both sides [5]; (2) in 
1982, Garey gave a numerical solution for a thin layer 
subjected to a step change of temperature on one side 
[6]; (3) in 1984, Ozisik gave an analytical solution 
in a finite slab with insulated boundaries [7], in his 
treatment, a volumetric energy source was used; (4) 
in 1985, Frankel,  using flux formulation of hyperbolic 
heat conduction equation, gave an analytical solution 
for a finite slab under boundary  condition of rec- 
tangular heat pulse [8]; (5) in 1985 and 1986, Glass 
gave numerical solutions for a finite medium with 
surface radiation [9] and temperature-dependent con- 
ductivity [10], respectively and (6) in 1988, Gem- 
barovic gave an analytical solution for a finite slab 
under boundary condition of instantaneous heat pulse 
and extended heat pulse [11]. Most previous works 
were performed for a pulse heat flux or a sudden 
temperature change. But for a periodic flux in a finite 
medium, the work is seldom found in literature. 

The present work investigates analytically the non- 
Fourier effects in a finite medium subjected to a per- 
iodic heat flux condit ion by using the hyperbolic heat 
conduction model. The temperature profiles at the 
front and rear surfaces are calculated for different z0co, 
the results are compared with those obtained from 
Fourier parabolic heat conduction equation. The 
' transition condit ion'  between the 'parabolic '  and 
'hyperbolic'  behavior of temperature response at both 
of the surfaces are obtained. The non-Fourier  effect 
is discussed by comparing the phase and amplitude 
between the front and rear surthces. 

ANALYSIS 

Consider a slab as a finite medium with the thick- 
ness of L with insulated boundaries in which one- 
dimensional heat conduction and constant  thermal 
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NOMENCLATURE 

amplitude of periodic temperature Ve 
response X 
thermal diffusivity x 
specific heat capacity 
Fourier number, at/L 2 
Fourier number based on frequency of 
heating flux, a/coL 2 
thickness of medium 
Laplace transformation A~ 
inverse Laplace transformation 2 
heat flux p 
Laplace transformation of q r0 
residue co 
Laplace variable 
temperature 
Laplace transformation of T 
time 
dimensionless temperature defined by 
equation (16) 

Vernotte number, x/(azo)/L 
dimensionless spatial variable, x/L 
spatial variable. 

Greek symbols 
~p phase of periodic temperature 

response 
phase difference, (q~F-- qgR)/2~F01 
thermal conductivity 
mass density 
relaxation time 
frequency of periodic heating 
flux. 

Subscripts 
F front surface 
R rear surface. 

properties prevail. The medium is initially in equi- 
librium at temperature T(x, 0) = 0, from time t = 0 
the external surface at x = 0 is exposed to a periodic 
heat flux with the amplitude q0 and the frequency co. 
In this situation, the general non-Fourier heat con- 
duction, equation (2), should be in one-dimensional 
form 

02T OT ~2T 
a ~ x  2 = ~ -  + %  at ~ .  (3) 

The boundary and the initial conditions are 

_ 2~xT(0,t ) O = z0 ~q(0,t) + q(O,t), q(0,t) = qo cos cot 

(4a) 

Q 
~xT(L,t) = 0 (4b) 

T(x,0) = 0, ~t T(x,O) = 0, q(x,O) = 0. (5) 

If the Laplace transformation is applied to equation 
(3) by taking into account the initial conditions (5), 
the following subsidiary equation is obtained as 

a T " -  (S-VoS2)T = 0 (6) 

and ~xxT(L's) = 0 

(7) 

with the conditions 

T( o , s )  = - (1 + % s ) o ( s )  

where T(x, s) = L[T(x, t)] and q(s) = (1/qo)L[q(O, t)] 

are the Laplace transform of T(x, t) and q(0, t), 
respectively. 

The solution of equation (6) with respect to the 
condition of equation (7) is 

T(x,s) = qo L x / ~  + Zos)/a cosh r ( x -  L) q(s) 
pcL x/s sinh rL 

(8) 

where r = x/(S+ZoS~)/a, p is the density, c is the spec- 
ific heat capacity. For  convenience in subsequent deri- 
vation, the following functions are introduced as 

F 1 (s) = Lx/(1 + Zos)/a cosh r ( x -  L) 
n/s sinh rL 

G (s) = q(s) 

and F(s) = FI (s)F2 (s) (9) 

and 

f ( x ,  t) = L-1 [F(s)]  f l  (x,  t) = L -1 [F, (s)] 

A ( x ,  t) = L - ' [ F 2 ( s ) ] .  (10) 

Then the inverse transformation of equation (8) can 
be expressed as 

t T .  
T(x,t) = L- l  [T(x,s)] = ~ L-1 [F(s)] = p~L f(x,t).  

(11) 

Equations (9) and (10) along with the property of 
Laplace transform give 



Non-Fourier heat conduction 1587 

f ( x ,  t) = f l  (x, t)*Jl (x,t) = (x,t')f2 ( x , t - t ' )  dr' 

(12) 

1/Ve = (L/a)x/(a/%) denotes the dimensionless speed 
of propagation of temperature wave, and X is the 
dimensionless coordinate, the temperature profile 
inside the finite medium is obtained as 

wheref~(x,t) is derived in the Appendix and fz(x,t) is 
determined by equations (9) and (10), the results are 
given as follows: 

A (x,t) = 

• N [ n r ~ x ~ f l  + / 7  _ tL_(  ' - " '  

,+,,_21<,ost, T)l_ e 5,0 -, 

1-/7 ] 
/7 e ~o (' +a) , when/7=real  

/"nizx~ _/2_ r 
1+2 £ c°'<'t,T)e ,,=~, ~<0L c°s/7't 2,0 

1 . f l l t~ 
+ ~- san ~ZJ  when/7 =/71 i 

(13) 

fz  (x,t) = L -1 [q(s)] - q(O,t) cos cot (14) 
q0 

where/7 is defined by equation (A6) in the Appendix, 
N is a point at which/7 changes from a real number 
to a complex number with increasing the value of n. 
Substituting equations (13) and (14) into equation 
(12) yields the following, 

f ( x , t ) =  f i { l +  ~ f m z x \ f l + / 7  ,' ~ ,,= 1 , : , os i ,T j L~e  ~ 1--]7) 

' ; '  e +  --,',]} o,,- ,') <,,', 

when/7 = real (15a) 

f ( x , t ) =  ~'[1 ~ /nr~x\ ,' F + 2,, _-2,, °°s i, T J e =  

1 /7~t' 
+ ~ sin ~2~% ]}  cos o (  t -  t') dt', 

when/7 =/71 i. (15b) 

By a straightforward series of manipulations of inte- 
gration, the non-Fourier temperature wave inside the 
finite medium should be obtained. By introducing the 
following dimensionless quantities 

T( X, Fo ) at 
V(X, Fo) -- - -  Fo = - -  

qo/pccoL L 2 

a a ,  o x 
Fol = - -  Ve 2 = - - -  X = - -  (16) 

~ L  2 L 2 L 

where Fo is Fourier number, Ve is Vernotte number 
which is the relaxation Fourier number and 

F o  N 
V(X, Fo) = sin _ ~  + ~ cos (n~X) 

P'o l ,, =1 

f-(1+/7)//7/~ Fo . Fo ~ ~ ~,,~ 
/ ~ / ~ _ c O S ~ o  + s l n ~ o , - ;  e-  Fo,| 

x 4  ~ + \ ~ 1 / 
| (1 - - /7 ) / /7 /"  F o  . F o  ~ ; F , , \  
/ ~ - ~  /~+ C O S ~  + s m ~  --¢+ e- +~o,/ 
L ¢++1 \ x+o~ ~ol / 

when/7 = real (17a) 

and 

• Fo 2Ve 2 ~o 
V(X, Fo) = smF~-ol + to ,  - ' u ~ , ~ c ° s  (nnX) 

Fo 1 Fo 

"c°s ff--ol -/71 sin ff-ol [ 1+42+ F o (  . ¢ + F o  
l+e-2ve~ 4+ sln2ve2 

4+Fo~-] 
-c°s2ve )/ 

+ 

Fo 1 Fo 

sin 

4_Fo~7 

+ 

Fo I Fo 
sinff~ol +1+42+/7-~c°sff~ol [ F o (  ¢+Fo 

4+--e 2Ve ~ sin 2 Ve2 

4+Fo~7 
cos L I 

Fo 1 Fo 

sin ff~°~ 1-+/7-T c°s ffO~°~42_ I ~- - e  zw ~-F° I~z~2\sln v ~ [ "  ~ F o  

4_Fo'\'] 
+4_ cos 

when/7 =/71i (17b) 

where 

~. Foi 2Ve2 (18) 
~+ =(l_+/J)2~Se z 4+ = i l l +  Foi 

For checking the reasonability of the solution, we 
consider a limit situation of above solution, *0 ~ 0, 
i.e. Ve ~ 0, the non-Fourier solution should go back 
to the Fourier solution. Under this condition, we have 
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= (1 - - x /1 - - (2mzVe)  2) Fo, 
2 Ve 2 

= [1 - (1 - 2n27r 2 Ve- + 2n-re ~ Ve-O( ve-))]2~e2e 2 

= nZrr2Fol (19a) 

and 

(1 +fl)/fl  = 2, (1 - f l ) / f l  = 0. (19b) 

Substituting equation (19) into equation (17) yields 

Fo 
V(X, Fo) = sin Fo~ 

~ (n2rc2 FoD2 + (nrcX) ,( Fo + 2  ,,~-1 n2rc2 Fol cos 
FOl 

+sin~o~o t -n27t2Fo, e -':'~F" . (20) 

This equation coincides with the Fourier  solution 
which can be easily derived by using a Laplace trans- 
formation technique. At first view equation (20) seems 
to be unable to satisfy the Fourier  form of  the bound- 
ary condition (4a), while actually it is able to in the 
sense of  generalized function [12]. 

the temperature wave. It can be seen that the 
wavefront positions are located at Fo = Ve, 3Ve, 
5Ve, . . .  for the rear surface and Fo = 2Ve, 4Ve, 
6Ve . . . .  for the front surface. Because the thickness of  
the slab is 1.0 and the wave propagation speed is liVe, 
the propagation takes time Ve from one side of  the 
slab to the other, therefore, the ' jump points'  denote 
the moment  at which the thermal wavefront reaches 
the front or rear surface after propagation through 
the medium and many times of  reflection at the two 
surfaces. The figure shows the propagation,  the ' jump 
point '  gets lower and lower relatively then disappears, 
and the temperature response becomes a smooth per- 
iodic wave. 

Figures 2(a) and (b) show the temperature response 
at both the surfaces respectively after a periodic sur- 
face heat flux for the period Fo~ = 0.25 with various 
values of  Ve2/FOl = roe). In both of  the figures, the 
condition Ve = 0.07, 0.1, 0.2, 0.3 corresponds to 
z0co= Ve2/Fo~ =0.02 ,  0.04, 0.16, 0.41. The tem- 
perature solutions predicted by the Fourier  heat con- 
duction equation are also prepared based on equation 
(20) in order to compare with those from non-Fourier  
conduction equation. By this way, the transition 
between 'hyperbolic '  and 'parabolic '  can be displayed 

(a) 
CALCULATED RESULTS A N D  D I S C U S S I O N  

Utilizing equation (17), numerical computat ion was ~ 2 
performed in order to display the temperature profile ~, 
arising from a periodic surface heat source at x = 0 
on an infinite slab with the thickness L. 

Figure 1 shows the temperature response during ~ 0 
an oscillatory surface thermal disturbance with the 

e ~  

period Foj = 0.25 at the front and rear surfaces (X = 0 
and 1) and for Ve = 0.8. This figure gives a general 
transient temperature behavior of  non-Fourier  heat 
conduction in the slab under periodic surface heating. - 2  
The series of  ' jump points'  at both of  the curves are 
the reaching moment  of  the propagating wavefront of  

I ' i , i 
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Fig. 1. Comparison of temperature responses of front and 
rear surface with a given value Fo~ = 0.25. 
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Fig. 2. (a) Effect of z0~ on the temperature response at the 
front surface with a given value Fo~ = 0.25. (b) Effect of z0o9 
on the temperature response at the rear surface with a given 

value Fo~ = 0.25. 



Non-Fourier heat conduction 1589 

clearly. The comparison shows that, at both of  the 
surfaces when Ve ",; 0.07, i.e. roe) ~< 0.02, the differ- 
ence between the results from the hyperbolic and the 
parabolic equation is below 1%, i.e. the temperature 
responses predicted by Fourier  and Non-Four ie r  are 
almost the same as each other. In other words, the 
inequality ro e) > 0.1)2 represents the condit ion of  the 
occurrence of  difference in temperature response 
between the Fourier  and the non-Fourier  solution. 

For  periodic thermal disturbance, it is necessary 
to give a discussion about  the phase and amplitude 
difference between the front and rear surfaces of  the 
periodic temperature response. Actually this dis- 
cussion is significant only for small value of  Vernotte 
number, because increasing Ve makes the temperature 
response deviate from a normal periodic curve (see 
Fig. 1). It is not  easy to give a simple analytical 
expression of  the phase and amplitude difference, so 
the numerical calculation is performed by means of  
the temperature response [equation (17)]. Figure 3 
shows the phase difference between the front and the 
rear surface vs Vernotte number for a given period 
Fo~ = 0.25, in which the Fourier  result is also 
presented. The vertical coordinate is A4~ = UPv--~0R)/ 
2~Fo~, where (~0F--q~R) is determined by the time 
difference of  the first minimum point (peak) in tem- 
perature response between the front and rear sur- 
faces. It can be seen that, when Ve ~ O, the phase 
difference of  non-Fourier  approaches that of  the 
Fourier. With increasing of  the Vernotte number, 
i.e. with enhance of  the non-Fourier  effect, the phase 
difference increases. For  the same periodic heat flux 
the Fourier  heat conduction predicts a minimum limit 
of  the phase difference. This because non-Fourier  law 
predicts a relative iiow speed of  thermal disturbance 
propagation. 

Figure 4 shows the amplitude damping after propa- 
gation through the medium as a function of  Vernotte 
number for a given value Fo~ = 0.25, in which the 
Fourier  results are also present. Here an amplitude 
damping is defined by (AF--AR),  where Av and AR are 
the amplitude of  the first minimum point of  the front 
and rear surface, respectively. The figure illustrates 
that, under the condit ion Ve--,O, the amplitude 
damping of  the non-Fourier  form approaches that of  

' i , i ' i 

<3 
o~ 0.24  _ 

0 .22  

== Fourier 0.2 
i I ~ I = I 

0.0 0.1 0.2 0.3 
Vemotte Number, Ve 

Fig. 3. Phase difference between the front and the rear surface 
as a function of Vernotte number. 

;= 
e~ 

0.8 

0.7 

. . . .  I . . . .  I . . . .  I 

Fourier 

0.1 0.2 0.3 
Vemotte Number, Ve 

Fig. 4. Amplitude difference between the front and the rear 
surface as a function of Vernotte number. 

the Fourier  form, with increasing of  Vernotte number, 
amplitude damping decreases relatively. For  the same 
periodic heat flux the Fourier  heat conduction predicts 
a maximum damping of  amplitude. This means that 
when a periodic heat flux propagates through a med- 
ium in a non-Fourier  form, the amplitude will have a 
relative small damping. The stronger the non-Fourier  
effect is, the smaller the damping in amplitude is. 
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APPENDIX 

Equation (9) can be expressed as 

A (s) cosh r(x  - L) 
FI (s) - 

B(s) ds 
_ _  sinh rL 

Lx/(1 +Zos)/a 

1 fsq-ZoS2~, 2 1 {sq-ZoS2\ 2 
l +  + 

1 2_2( l+ros '~  1 3r4 (, 0sT+ 
(A1) 

According to the definition of  the inverse Laplace trans- 
formation and the residue theorem, the original function of  
F1 (s) can be expressed as 

1 ~a+i,~ A(s)  
f l  (x,t) = L '[F1 (s)] = - -  / e ~' 2rciL_io ~ B ~  ds 

= L ~ e / - - e  , s . /  (A2) .=, kB(~) ) 

where s~ . . . . .  s. are all of the poles of  F~(s), Re[] is the 
notation of  residue. 

Letting B(s) = 0, we can obtain all of  the poles as follow- 
ing, 

si = 0 (A3) I 1 
- ~ (1 +fl) 

s'~= 
1 

~Zo ( l+ f l ,O  

when fl = real 

(A4) 

when fl = flli  

f -  ~ (1 + fl) when fl = real 
1 

s" = (AS) 
1 

~% (1 +f l l i  ) w h e n f l = f l d  

where 

fl = x /1 -4n2nZzoa lL  2 fli = ~ n X n Z z o a / L 2 -  1 
n = 1,2 . . . .  (A6) 

Since all of the poles are of the first order, the residue can be 
calculated as follows. 

(1) For st 

Re[e~tFl(s),st] = a ( s l )  - s i t  = 1. 
B'(s,~ ~ 

(A7) 

(2) For s'. 

A(S'n) s ' t  
Re[e~' Fi (s),s'.l = ~ e . 

" 1 - 3  [n~x~ 

when fl = real 
= (A8)  

['nnx'~ _ ~ F  f l i t  1 . f l i t7  c°stT)e I 
when fl = fll i. 

(3) For s: 

A(s")  s,,, 
Re[e~'rl (s), s~] = ~ e-  

" l + f l  n~x  t 

when fl = real 
= (A9) 

/n~x'~ ' F ~ , t  1 . ll, tG 
cos k ~ - )  e- ~ le°s~% + ~sln~r0J 

when fl = fll i. 

From equation (A2) and equations (A7)-(A9), the inverse 
transformation offl(s)  is obtained as follows, 

f l  (x,t) = Re[e~tF1 (s), sj ] + ~ {Re[e~Fi (s), s~] 
n = l  

+ Re[e~tF~ (s), s"]} (A10) 

and the result is given by equation (13). 


